
对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“∽”来表示,读作“相似于”。相似三角形对应边的比叫做相似比(或相似系数)。相似三角形其实是一套定理的集合,它主要描述了在两个相似三角形中边、角的关系。
相似三角形
Similar Triangles
对应角相等,对应边成比例
数学、几何
简介
三角分别相等,三边成比例的两个三角形叫做相似三角形(similar triangles)
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相似比为1的相似三角形。相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。
判定定理
基本判定定理
(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似);
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似);
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似)。[2]
直角三角形判定定理
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
特殊情况
- 凡是全等的三角形都相似
全等三角形是特殊的相似三角形,相似比为1。反之,当相似比为1时,相似三角形为全等三角形。
2.有一个顶角或底角相等的两个等腰三角形都相似
由此,所有的等边三角形都相似。
定理推论
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
性质介绍
1.相似三角形对应角相等,对应边成比例。
2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3.相似三角形周长的比等于相似比。
4.相似三角形面积的比等于相似比的平方。
5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
6.若a:b=b:c,即b的平方=ac,则b叫做a,c的比例中项。
7.c/d=a/b等同于ad=bc。
8.必须是在同一平面内的三角形里
(1)相似三角形对应角相等,对应边成比例。
(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比。
(3)相似三角形周长的比等于相似比。
射影定理
射影定理(又叫欧几里德(Euclid)定理)俗称母子三角形:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
例如:(前提:∠BAD+∠DAC=90度,AD⊥BC)公式Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)^2=BD·DC,(2)(AB)^2=BD·BC,(3)(AC)^2=CD·BC。等积式 (4)ABXAC=BCXAD(可用面积来证明)
一、平行线等分线段定理
如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行相交的)直线上截得的线段也相等。
二、平行截割定理
两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例。
三、平行截割定理推论
平行于三角形一边的直线截其他两边,截得的三角形与原三角形的对应边成比例。
运用
求物高,求距离。
设x的方程思想=等式 如下:面积公式勾股定理全等三角形或相似三角形三角函数
步骤看实际问题(给定)提取关键信息画相应图形(建立数学模型)找出等量关系(设X求解)
默认已知的条件:太阳光是平行光线同一时刻,甲物高/乙物高=甲影长/乙影长
您还可以搜索:相似三角形是什么意思,相似三角形百科,相似三角形的公式是什么,相似三角形的概念视频讲解,相似三角形的8种基本图形,相似三角形概念整理,相似三角形的讲解,相似三角形典例,相似三角形常见经典模型总结非常好,相似三角形是啥④
本文地址:[https://www.chuanchengzhongyi.com/detail/18301.html]